ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. (COMPUTER SCIENCE AND ENGINEERING)

COURSE CODE: 106

Register Number :	
	Signature of the Invigilator (with date)
COURSE CODE • 10	C

COORDE CODE: 100

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) or (E) in the relevant box of the ANSWER SHEET using HB pencil.
- Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- Use of Calculators, Tables, etc. are prohibited.

Directions for the Questions 1 to 5: Assume that a pool of jobs to be executed with one processor with following specifications:

Job	Execution Time	Priority
A	11	4
В	1	3
\mathbf{C}	2	2
D	1	5
E	5	1

The jobs are assumed to have arrived in the order A, B, C, D, E, but all have arrived in "instantaneous succession" at time t = 0. Here the unit of the time is second Larger priority numbers indicate higher priority. Note that the terms "turnaround time" and "response time" are interchangeable for this problem, since each job consists of only one CPU burst.

	one CPU burst.	angeable for unis pr	obiem, since ea	ch job consists of only
1.	Using the First-Come First (Response) Time and the Versepectively.			
	(A) 11 and 0	(B)	12 and 11	
	(C) 14 and 12	(D)	15 and 14	
	(E) None of the above			
2.	Using the First-Come First (Response) Time and the Versectively.			
	(A) 11 and 0	(B)	12 and 11	
	(C) 14 and 12	(D)	15 and 14	
	(E) None of the above		•	
3.	Using the First-Come Firs (Response) Time and the Versectively.			_
	(A) 11 and 0	(B)	12 and 11	
	(C) 14 and 12	(D)	15 and 14	
	(E) None of the above			
4 .	Using the First-Come Firs (Response) Time and the Vrespectively.			
	(A) 11 and 0	(B)	12 and 11	
	(C) 14 and 12	(D)	15 and 14	
	(E) None of the above			

5.	(Res) Time a				heduling algorithm, e Job 'E' is ———	_
	resp (A)	ective. 11 ar	_			(B)	12 and 11	
	(C)	14 ar	_			(D)	15 and 14	
	(E)		of the a	bove		(12)		
6.	Mat	ch the	following	g :				
	(a)		scheduli	_		1.	Round-robin	
	(b)	Batcl	h process	sing		2.	SCAN	
	(c)		sharing			3.	LIFO	
	(d)		rupt pro			4.	FIFO	
	Mat	ches :						
		(a)	(b)	(c)	(d)			
	(A)	3	4	2	1 .			-
	(B)	4	3	2	1			•
	(C)	2	4 .	1	3			
	(D)	1	4	3	2			
	(E)	None	of the a	bove				
7.			is	one of p	re-emptiv	e schedulir	ng algorithm.	
	(A)	RR				(B)	FCFS	
	(C)	SSF				(D)	Priority based	
	(E)	None	of the a	bove				
8.	Ton	down	design de	nee not r	eanire			•
0.	(A)		wise refi			(B)	loop invariants	
	(C)	~	charting			(D)	modularity	
	(E)		of the a			(2)		
9.					Virtual N ve buffer.	Aachine (P	VM) has ———	send buffer
	(A)	One-				· (B)	One-two	
	(C)	Two-				(D)	Two-one	
	(E)		e of the a	hove		` ,		

.

10.		andirected graph possesses an euleria ices are	n circ	uit if and only if it is connected and its
	(A)	All of even degree	(B)	All of odd degree
	(C)	Of any degree	(D)	ALL of the above
	(E)	None of the above		
11.	The	minimum number of edges in a conne	cted g	graph with 'n' vertices is equal to
	(A)	n(n-1)	(B)	n(n-1)/2
	(C)	n^2	(D)	n-1
	(E)	None of the above		
12.	The	decimal number equivalent of (4057.0)6)8 is	
	(A)	2095.75	(B)	2095.075
	(C)	2095.937	(D)	2095.0937
	(E)	None of the above		
13.		k propagation is a learning technique ropagating weight changes	that a	adjusts weights in the neural network
	(A)	Forward from source to sink		
	(B)	Backward from sink to source		
	(C)	Forward from source to hidden node	s	
	(D)	Backward from since to hidden node	s	
	(E)	None of the above		
14.	Prot	totyping is used to		
	(A)	test the software as an end product		
	(B)	expand design details		
	(C)	refine and establish requirements ga	atheri	ng
	(D)	complete the end product with minir	nal se	t of functionalities
	(E)	none of the above		
15 .	Whi	ch one of these are not software main	tenan	ce activity?
	(A)	Error correction	(B)	Adaptation
	(C)	Implementation of Enhancement	(D)	Establishing scope
	(E)	None of the above		

.

•

16.	A da	ata mart may contain		
	(A)	Summarised data	(B)	De-normalized data
	(C)	Aggregate departmental data	(D)	All of the above
	(E)	None of the above		
17.	The	number of 1's present in the binary i	represe	entation of $10 \times 256 + 5 \times 16 + 5$ is
	(A)	5	(B)	6
	(C)	7	(D)	8
	(E)	None of the above		
18.	The	goal of operator overloading is		
	(A)	To help the user of a class	(B)	To help the developer of a class
	(C)	To help define friend function	(D)	All of the above
	(E)	None of the above		•
19.	The	amortized cost of insertion operation	in spla	ay tree is
	(A)	$O(\log(n+1))$	(B)	$O(\log(n))$
	(C)	O(n+1)	(D)	O(n)
	(E)	None of the above		
20.	Whi	ch of the following is the process by v	vhich a	user's privileges ascertained?
	(A)	Authorization	(B)	Authentication
	(C)	Access Control	(D)	All of the above
	(E)	None of the above		·
21.	The	basic variants of time-stamp based n	nethod	of concurrency control are
	(A)	Total time stamp-ordering		
	(B)	Partial time stamp-ordering		
	(C)	Multiversion Time stamp-ordering		
	(D)	All of the above		•
	(E)	None of the above		
22.	How dime	many maximum number of sta ensional linear array of size 'n'?	icks th	nat can be implemented in single
	(A)	1	(B)	n/2
	(C)	n	(D)	2n
	(E)	None of the above		•

23.	The	number of different trees with 8 nod	les is					
	(A)	256	(B)	255				
	(C)	248	(D)	64				
	(E)	None of the above						
24.		en the priority queue is represented nent can be performed in (queue cont		heap, the insertion and deletion of an n elements)				
	(A)	O(n) and $O(1)$ respectively	(B)	O(n) and O(n) respectively				
	(C)	O(1) and $O(1)$ respectively	(D)	O(1) and O(n) respectively				
	(E)	None of the above						
25 .	Whi	ich of the following switching techniq	jues is n	nost suitable for interactive traffic?				
	(A)	Circuit switching	(B)	Message switching				
	(C)	Packet switching	(D)	All of the above				
	(E)	None of the above						
26.	Whi	ich of the following can be accessed b	y transi	fer vector approach of linking?				
	(A)	External data segments	(B)	External subroutine				
	(C)	Data located in other procedure	(D)	All of the above				
	(E)	None of the above						
27.	By r	neans of a data flow diagram, the an	alyst ca	n detect				
	(A)	Task duplication	(B)	Unnecessary delays				
	(C)	Task overlapping	(D)	All of the above				
	(E)	None of the above		-				
28.	"M-0	Commerce" refers to						
	(A)	A myth which does not exist in real	lity					
	(B)							
	(C)	The ability to have large capac commerce	ity of	memory storage dealing trade and				
	(D)	All of the above		•				
	(E)	None of the above						
29.	Max	imum number of edges in a n- Node	undired	ted graph without self loop is				
	(A)	n^2	(B)	n(n-1)				
	(C)	n(n + 1)	(D)	n(n-1)/2				
	(E)	None of the above						

		•	•	
	station in a network in a net ortest output queue. What ro		coming packets by placing them or is being used?	n its
(A)	Hot potato routing	(B)	Flooding	
(C)	Static routing	(D)	Delta routing	
(E)	None of the above			
. Wi	at is the order of each of the	following tasks	respectively?	
(i)	Inserting a single item i average case	into a binary se	arch tree containing n items, in	the
(ii)	Performing a Towers of H	lanoi algorithm v	vith n disks	
(A)	O(2n) & O(Log 2n)	(B)	O(Log n²) & O(2n)	
(C)	$O(n^2) \& O(n^2)$	(D)	O(2n) & O(n2)	
(E)	None of the above			
. En	ergency fixes known as pato	ches are result of		
(A)	Adaptive maintenance	(B)	Perfective maintenance	
(C)	Corrective maintenance	· (D)	All of the above	
(E)	None of the above			
3. Th	e post order traversal of a bi	nary tree is DEB	FCA Find out the preorder travers	sal
(A)	ABFCDE	(B)	ADBFEC	
(C)	ABDECF	(D)	ABDCEF	
(E)	None of the above			
. B+	tree are preferred to binary	tree in database	because	
(A)	Disk capacities are greate	er than memory o	capacities	
(B)	Disk access much slower	than memory acc	cess	
(C)	Disk data transfer rates a	are much less tha	n memory data transfer rate	
(D)	Disk are more reliable tha	an memory		
(E)	None of the above	•	-	
. W	at deletes the entire file exc	ept the file struc	ture?	
, ,,,		(75)	Table Barb	
(A)	ERASE	(B)	DELETE	
	ERASE ZAP	(D) (B)	PACK	

.

36.	Consider a disk drive that has a capacity of 8 Gigabytes (assume 1GB = 1,000,000,000 bytes). If that drive has 5 platters (assume that both sides are used), 10,000 tracks per surface, and an average of 200 sectors per track, how many bytes are in each sector?					
	(A)	800 bytes per sector	(B)	400 bytes per sector		
	(C)	200 bytes per sector	(D)	100 bytes per sector		
	(E)	None of the above				
37.	On	receiving an interrupt from an	I/O device, th	e CPU		
	(A)	Halts for predetermined time				
	(B)	Branches off to the interruj	pt service rou	tine after completion of the current		
	(C)	Branches off to the interrupt	service routin	ne immediately		
	(D)	Hands over control of addres	s bus and data	a bus to the interrupting device		
	(E)	None of the above				
38.	Con 32 f	sider a logical address space of rames. How many bits are ther	of 8 pages of ce in the physi	1024 words mapped with memory of ical address?		
	(A)	9 bits	(B)	11 bits		
	(C)	13 bits	(D)	15 bits		
	(E)	None of the above				
39 .	If ar	n integer needs two bytes of sto	rage, then the	e maximum value of unsigned integer		
	(A)	$2^{16}-1$	(B)	$2^{15} - 1$		
	(C)	2^{16}	(D)	2^{15}		
	(E)	None of the above	` ′			
40.	Nega	ative numbers cannot be repres	sented in			
	(A)	Signed magnitude form	(B)	1's complement form		
	(C)	2's complement form	(D)	All of the above		
	(E)	None of the above				
41.	Hane	doff is the mechanism that				
	(A)	Transfer an ongoing call from	one transceiv	er to another transceiver		
	(B)	Transfer an ongoing call from				
	(C)	Dropping an ongoing call and		•		
	(D)	Migrating one call to another	vroviiie a m	JIT OULL		
	(E)	None of the above				
	\—/					

42 .	Con	sider the grammar						
	$S \rightarrow$	ABCc Abc						
	BA	→ AB						
	Bb -	$\mathrm{Bb} \to \mathrm{bb}$						
	Ab -	→ ab						
	Aa -	→ aa						
	Whi	ch of the following sentences can be	derived	by this grammar?				
	(A)	abc	(B)	aab				
	(C)	abcc	(D)	abbc				
	(E)	none of the above						
43.	Ider	tify the incorrect statement:						
	(A)	The ATM adoption layer is not ser	vice dep	endent				
	(B)	Logical connections in ATM are re	ferred to	as virtual channel connections				
	(C)	ATM is streamlined protocol with	minima]	l error and flow control capabilities				
	(D)	ATM is also known as cell delays						
	(E)	None of the above						
44.	Soft	ware risk estimation involves follow	ing two	tasks:				
	(A) Risk magnitude and risk impact							
	(B)	Risk probability and risk impact						
	(C)	Risk maintenance and risk impact	;	•				
	(D)	Risk development and risk impact						
	(E)	None of the above						
45 .	Тос	ompare, overlay or cross analyze to	maps in	GIS				
	(A)	Both maps must be in digital form						
	(B)	Both maps must be at the same eq						
	(C)	Both maps must be on the same co	ordinate	e system				
	(D)	All of the above		- -				
	(E)	None of the above						
46 .	Web	Mining is not used in which of the	followin	g areas?				
	(A)	Information filtering	(B)	Crime fighting on the internet				
-	(C)	Online transaction processing	(D)	Click stream analysis				
	(E)	None of the above						
47 .		number of nodes in a complete bin	ary tree	e of height h (with roots at level 0) is				
	(Å)	$2^{0}+2^{1}+\dots 2^{h}$	(B)	$2^{0}+2^{1}+\dots 2^{h-1}$				
	(C)	$2^{0}+2^{1}+\dots 2^{h+1}$	(D)	$2^1 + \dots 2^{h+1}$				
	(E)	None of the above						

48.	The complexity of Bubble sort algorithm and merge sort algorithm is ———————————————————————————————————							
	(A)	O(n) and O(log n)	(B)	$O(\log n)$ and $O(n^2)$				
	(C)	O(n²) and O(n log n)	(D)	O(n log n) and O(n²)				
	(E)	None of the above						
49.	Inve	erted files are characterized by	•					
	(A)	Each record contains multiple i	ndex fields					
	(B)	Embedded tags		•				
	(C)	An external index table with an	entry for e	each keyword				
	(D)	All of the above	-					
	(E)	None of the above						
5 0.	whe	ere n<=m, the expected number of		ash 'n' keys in to a table of size 'm' involving a particular key 'x' is :				
	(A)	Less than 1	(B)	Less than n				
	(C)	Less than m	(D)	Less than n/2				
	(E)	None of the above						
51.	Let	A be an adjacency matrix of a gra	ph G. The	ij^{th} entry in the matrix $\mathbf{A}^{\mathbf{K}}$, gives				
	(A)	The number of paths of length I	K from vert	$\operatorname{ex} V_i$ to vertex V_j				
	(B)	(B) Shortest path of K edges from vertex V_i to vertex V_j						
	(C)							
	(D)	(D) Length of a Hamiltonian cycle from vertex V_i to vertex V_j						
	(E)	None of the above						
52.	_	t is the following code segment defin(){	oing?					
	char	· c;						
	cin.g	get(c);						
	if (c	if (c!= '\n') {						
	fn()	•						
	cout	.put(c);						
	}							
	}							
	(A)	The string entered is printed as	it is					
	(B)	The string entered is printed in	reverse ord	ler				
	(C)	It will go in an infinite loop						
	(D)	It will print an empty line		· · · · · · · · · · · · · · · · · · ·				
	(E)	None of the above						

53.	Th	e searching technique tha	t takes O(1) time t	to find a data is
	(A)	• •	(B)	
	(C)	Hashing	(D)	
	(E)	None of the above		
54.	The Bul	e number of interchange bble Sort is	s required to sort	5, 1, 6, 2 4 in ascending order using
	(A)	6	(B)	5
	(C)	7	(D)	8
	(E)	None of the above		
55.	The	e solution of the recurrence	e relation $\mathbf{a}_{\mathrm{n}}=2\mathbf{a}_{\mathrm{n}}$	$a+1$ with initial condition $a_1=1$ is
	(Λ)	2^{n+1}	(B)	2^{n} –1
	(C)	$2^{n-1} \pm 1$	(D)	All of the above
	(E)	None of the above		
56.	Mer time	rging 4 sorted files contain e.	ning 50, 10, 25 and	l 15 records will take ————————————————————————————————————
	(A)	O (100)	(B)	O (200)
	(C)	O (175)	(D)	O (125)
	(E)	None of the above		
57.	For vert	an undirected graph witlex is equal to	h n vertices and e	edges, the sum of the degree of each
	(A)	2n	(B)	(2n-1)/2
	(C)	$2\mathrm{e}$	(D)	$\mathrm{e}^2/2$
	(E)	None of the above		
58.	АВ-	tree of minimum degree t	can maximum —	——— pointers in a node
		t1	(B)	2t-1
	(C)	2t	(D)	t
	(E)	None of the above		
59.	The g	goal of hashing is to produ	ice a search that ta	akes
	(A)	O(1) time		$O(n^2)$ time
	(C)	O(log n) time		O(n log n) time
	(E)	None of the above		

60.				cified within braces immediately after
	redu	acing with the corresponding a	rule of gramma	ar.
	$S \rightarrow$	xxW { print " 1" }		
	$S \rightarrow$	y { print "2" }		
	W -	→ Sz { print "3" }	•	
		at is the translation of xxxx cribed by the above rules?	yzz using the	syntax directed translation scheme
	(A)	23131	(B)	11233
	(C)	11231	(D)	33211
	(E)	None of the above		
61.	A fil	le produced by a spreadsheet		
	(A)	Is generally stored on disk in	n an ASCII tex	kt format
	(B)	Can be used as it by the DB.	MS	
	(C)	Can be used for graphic		
	(D)	All of the above		
	(E)	None of the above		•
62.	Dat	a integrity control		
	(A)	Is used to set upper and low	er limits on nu	ımeric data
	(B)	Requires the use of passwor	ds to prohibit	unauthorized access to the file
	(C)	Has the data dictionary kee most recent modification for		d time of last access last back-up, and
	(D)	All of the above		
	(E)	None of the above		
63.		physical location of a records		ned by a mathematical formula that
	(A)	a tree file	(B)	an indexed file
	(C)	a hashed file	(D)	a sequential file
-	(E)	None of the above		
64.	Whi	ch type of file is part of the O	racle database	?
	(A)	Control file	(B)	Password file
	(C)	Parameter files	(D)	Archived log files
	(E)	None of the above		

65.	Whe	en is the SGA created in an Oracle	database	environment?
	(A)	When the database is created		
	(B)	When a user process is started	·	
	(C)	When the database is mounted		
	(D)	When the instance is started		
	(E)	None of the above		
66.	A ne	etwork that requires human interve	ention of	route signals is called a
	(A)	Bus Interface network	(B)	Ring network
	(C)	Star Optional network	(D)	T-switched network
	(E)	None of the above		
67.	Con	sider the following languages:		
	$L_1 =$	{WW W € {a, b}* }		\cdot .
	$L_2 =$	$\{ \ ww^R \ \ w \in \{a, b\}^* \ , w^R \ is \ the \ rever}$	rse of w	}
	$L_3 =$	$\{ 0^{2i} \mid I \text{ is an integer} \}$		
	$L_4 =$	$\{ 0^{i2} \mid I \text{ is an integer} \}$		
	Whi	ch of the following are regular?		
	(A)	Only L_1 and L_2	(B)	Only L2, L3, and L4
	(C)	Only L_3 and L_4	(D)	Only L ₃
	(E)	None of the above		•
68.		gital data rate of 9600 bps is encode ulation rate is?	ed using	8-level phase shift keying method, the
	(A)	1200 bands	(B)	3200 bands
	(C)	4800 bands	(D)	9600 bands
	(E)	None of the above		
69.	Whi	ch of the following is not a standard	l RS-232	C signal?
	(A)	RTS	(B)	CTS
	(C)	DSR	(D)	VDR
	(E)	None of the above		
70.	Whi	ch of the following is / are non-pollin	no eveto:	\mathbf{m}^{2}
70.	(A)	TDMA	(B)	Stop and wait
	(C)	Continuous ARQ	(D)	All of the above
	(E)	None of the above	(1)	ANT OF OHIO GROUPO
	(11)	A TOTAL OF SITE AND AD		

	· · · · · · · · · · · · · · · · · · ·	- ,		
Man				
(A)				
(B)		_		
(C)				
(D)		rs in the cent	er of each bit period	
(E)	None of the above			
	supports Data Ra	te Upto 1000	Mbps Gigabyte Ethernet.	
(A)	CAT 1	(B)	Thinnet	
(C)	CAT 5d	(D)	CAT 5e	
(E)	None of the above	•		
TCF	P/IP is also well known as			
(A)	OSI Model	(B)	TAT Model	
(A) (C)	DOD Model	(D)	TIP Model	
(E)	None of the above			
трх	CODV is used in			
		(B)	Maa-Macintosh	
		(75)		
		(1)	Witcrosoft	
(上 <i>)</i>	None of the above			
The	area of coverage of satellite rac			
(A)	Footprint	(B)	Circular polarization	
(C)	Beam width	(D)	Identity	
(E)	None of the Above			
Whi	ich of the following is wrong exa	ample of netv	vork layer ?	
(A)	X.25 Level 2-ISO			
(B)	Source Routing and Domain I	Naming User	ıet	
(C)			•	·
(D)				
(E)	None of the above	•		
Whi	ich of the following does not bel	ong to the co	ntext free grammer?	
		(B)	Non-terminal symbol	
(C)	Start symbol	(D)	End symbol	
	None of the above			
	(A) (B) (C) (D) (E) ((A) Ensure that the line remains (B) Have more than one symbol p (C) Increase the bandwidth of a si (D) Ensure that a transition occur (E) None of the above ———————————————————————————————————	(B) Have more than one symbol per bit period (C) Increase the bandwidth of a signal transmit (D) Ensure that a transition occurs in the cent (E) None of the above	(A) Ensure that the line remains unbalanced (B) Have more than one symbol per bit period (C) Increase the handwidth of a signal transmitted on the medium (D) Ensure that a transition occurs in the center of each bit period (E) None of the above

78.	HD	LC is		
	(A)	Bit oriented	(B)	Code transparent
	(C)	Code dependent	(D)	All of the above
	(E)	None of the above		
79.	Ada	aptive or dynamic directory used in p	acket r	outing changes
	(A)	Within each user session	(B)	Immediately next user session
	(C)	At system generation times only	(D)	All of the above
	(E)	None of the above		
80.	The	receive equalizer reduce delay distor	rtions ι	ısing
	(A)	Tapped delay lines	(B)	Gearshift
	(C)	Descrambler	(D)	Difference engine
	(E)	None of the above		•
81.	Con	text free languages are closed under		
	(A)	Union, intersection, Concatenation		
	(B)	Intersection, complement, kleene st	tar	
	(C)	Union, kleene star, Concatenation		
	(D)	Complement, kleene star, Concater	ation	
	(E)	None of the above		
82.	Let	R be a symmetric and transitive rela	tion on	a set A Then
	(A)	R is reflexive and hence a partial or	der	
	(B)	R is reflexive and hence an equivale	ence rel	lation
	(C)	R is not reflexive and hence not an	equival	lence relation
	(D)	All of the above		
	(E)	None of the above		
83.		ushdown automata isif there is iguration.	at mo	st one transition applicable to each
	(A)	Deterministic	(B)	Non Deterministic
	(C)	Finite	(D)	Non Finite
	(E)	None of the above		

•

84.	Rad	ius of a graph, denoted by	rad(G) is d	efined	by	
	(A)	max {e(v): v belongs to V	`}			
	(B)	min { e(v): v belongs to \	V }		•	
	(C)	max { d(u,v): u belongs to	o v, u does r	not equ	ual to v }	
	(D)	min { d(u,v): u belongs to	v, u does n	ot equ	ual to v }	
	(E)	none of the above				
85.	The	complete graph K, has d	different spa	anning	g trees?	
	(A)	n^{n-2}		(B)	n*n	
	(C)	$\mathbf{n}^{\mathfrak{n}}$		(D)	${f n}^2$	
	(E)	None of the above				
86.	Poly	hedral is				
	(A)	A simple connected grap	h			
	(B)	A plane graph				
	(C)	A graph in which the deg	gree of ever	y verte	ex and every face is atleast 3	
	(D)	All of the above				
	(E)	None of the above				
87.	If X		he set (X –	Y) uni	ion (Y – X) union (X intersection Y)	is
	(A)	X union Y		(B)	X ^e union Y ^e	
	(C)	X intersection Y		(D)	X^c intersection Y^c	
	(E)	None of the above				
88.	A bi	linear transformation can	be simulate	ed by t	the transformation	
	(A)	Rotation		(B)	Stretching	
	(C)	Inversion and translation	n	(D)	All of the above	
	(E)	None of the above				
89.	Cons	sider the relation $A \rightarrow FC$,	$C \rightarrow Q, B$	→ P. F	Find 3NF relations	
	(A)	AB, BP, AC, CQ		(B)	AB, BP, ACQF	
	(C)	AB, BP, ACF, CQ		(D)	All of the above	
	(E)	None of the above				

90.	The	memory address of fifth element of ar	ı'arra	y can be calculated by the formula
	(A)	LOC (Array [5] = Base (Array) + w words per memory cell for the array	(5-lov	wer bound), where w is the number of
	(B)	LOC (Array [5]) = Base (Array [5]) + words per memory cell for the array	- (5-le	ower bound), where w is the number of
	(C)	LOC (Array [5]) = Base (Array [4]) + words per memory cell for the array	(5-U	pper bound), where w is the number of
	(D)	All of the above		
	(E)	None of the above		
91.	Nan	ne of the rendering engine used in Fire	Fox l	prowser is
	(A)	Mozilla	(B)	DrawFox
	(C)	Gecko	(D)	Kecro
	(E)	None of the above		
92.	In tl	he raster scan method for transformat:	ion, a	90° rotation can be performed by
	(A)	Reversing the order of bits within ea	ch rov	w in the frame buffer
	(B)	By performing XOR on the frame but	ffer lo	cation
	(C)	By coping each row of the block into	a colu	mn in the new frame buffer location
	(D)	All of the above		
	(E)	None of the above		
93.	Obli	quee projection with an angle of 450 to	the !	horizontal plane is called as ?
	(A)	Cabinaet projection	(B)	Isometric projection
	(C)	Cavalier projection	(D)	All of the above
	(E)	None of the above		
) 4.	PHI	GS means		
	(A)	Programmers Hierarchical Interactiv	e Gra	aphics Standard
	(B)	Programmers Hidimension Interactive	ze Gra	aphics Standard
	(C)	High Performance Interactive Graph	ics St	andard
	(D)	Performance High Interactive Graphs	ics St	andard
	(E)	None of the above		

	-	•				
95.		ttack technique that forces a web site user's web browser is called	e to ecl	no client-supplied data, which execu		
	(A)	Cross-Site Scripting	(B)	Spin Lock		
	(C)	Man in the Middle Attack	(D)	Spiral Replication Threat		
	(E)	None of the above				
96.	If G	is a complete graph on four vertices t	he G is	3		
	(A)	Hamiltonian and Eulerian				
	(B)	Neither Hamiltonian nor Eulerian				
	(C)	Hamiltonian but not Eulerian				
	(D)	Eulerian but not Hamiltonian				
	(E)	None of the above				
97.	Whi	ch one of the following is a pure virtu	al func	etion?		
<i>31</i> .		Virtual void funct(int n);	ar mari			
	(A) (B)	Virtual void funct()=0;				
	(D)	Virtual void funct()=0, Virtual funct(int n);		•		
	(D)	Virtual rance(int ii), Virtual void funct (int n)=0;				
	(E)	None of the above				
	(12)					
98.	Iden	tify the user interface that is introdu	ced in	windows vista		
	(A)	AERO	(B)	CRISP		
	(C)	GLORY	(D)	All of the above		
	(E)	None of the above		•		
99.	Which of the following is an advantage of NTFS over FAT?					
	(A)) It permits the server to be used as both server and work- station.				
	(B)	It alleviates the need for data backups.				
	(C)	CONTRACTOR OF THE CONTRACTOR O				
	(D)					
	(E)	All of the above				
100.	Pee	phole optimization is a form of				
	(A)	Loop optimization	(B)	Local optimization		
	(C)	Constant folding	(D)	Data flow analysis		
	(F)	None of the above		•		